Chemistry Letters 1996 45 ## ¹³C, ¹⁷O, and ²⁹Si NMR Spectra and Stabilization of Silylated Ketenes and Bisketenes Annette D. Allen, Ian Egle, Rudolf Janoschek, Hui Wen Liu, Jihai Ma, Romeo M. Marra, and Thomas T. Tidwell* Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A1 †Institut für Theoretische Chemie, Karl-Franzens Universität, A-8010 Graz, Austria (Received September 4, 1995) The experimental and calculated ¹³C, ¹⁷O, and ²⁹Si NMR chemical shifts of silylated ketenes and bisketenes show trends consistent with charge redistribution resulting from neutral hyperconjugative donation from the R₃Si-C bond to the p orbital on the carbonyl carbon, and are supportive of this mechanism for the striking stability of these species. The remarkable stability of silylketenes has been utilized in our laboratory for the preparation of bisketenes 1, which are thermodynamically stable towards ring closure to cyclobutenediones 2.1 There is disagreement about the origin of the stabilizing influence of silyl substituents on ketenes. It was suggested by Brady and Cheng² that this effect arose from hyperconjugative donation from the C–Si bond into the in-plane carbon p orbital of the carbonyl group, as represented by the resonance structure $3A.^2$ This proposal was disputed by Runge, who instead argued that the silicon acted as a d_{π} – p_{π} electron acceptor, as represented by $3B.^3$ These two mechanisms give opposite predictions of the direction of electron redistribution in ketenes due to silyl group substitution. Our previous studies using *ab initio* molecular orbital calculations of the geometries and energies of silylketenes, are not definitive as to the origin of the stabilization of these compounds.⁴ This effect is related to the stabilization of β-silyl carbocations and radicals⁵, and the interaction shown in 3A is an example of "neutral hyperconjugation", as recently discussed by Lambert and Singer.⁵ Nuclear magnetic resonance spectroscopy is a powerful tool for the examination of electronic distributions in molecules, but ¹³C and ¹⁷O NMR have been utilized in only a few applications in ketenes,⁶ while ²⁹Si NMR⁷ has not previously been applied to ketenes. We now report an examination of NMR chemical shifts of silylketenes, studying multiple nuclei and structurally analogous substrates to guard Table 1. NMR Chemical shifts in CDCl₃ of ketenes and reference compounds (this work unless noted) | Ketene | $\delta^{13}C(C_{\alpha})$ | δ ¹⁷ O | δ ²⁹ Si | |--|----------------------------|----------------------------|--------------------| | Me ₂ C=C=O | 204.9 ^a | 329 ^a | | | t-Bu ₂ C=C=O | 203.4 | 330.6 (331.5) ^b | | | PhCMe=C=O | 205.6^{a} | | | | Ph ₂ C=C=O | 201.3^{a} | $340^{a,b}$ | | | Me3SiCH=C=O | 179.2 ^a | 255.0 | -0.2 | | Me ₃ SiCPh=C=O | 182.5 | | -0.6 | | (Me ₃ SiC=C=O) ₂ | 181.8 | 269.2 (269.0) ^b | 3.2 | | (t-BuMe2SiC=C=O)2 | 182.2 | 270.5 | 10.6 | | Me ₃ SiCH ₂ CO ₂ H | | | 3.8 | | Me ₃ SiCH ₂ CO ₂ Et | | | 3.2 ^c | | Me ₃ SiCH ₂ COCH ₃ Me ₃ Si | 206.8 | 536.7 | 1.6 | | β α
Me ₃ Si O | 202.0 | 499.1 | -8.4 | | t-BuMe ₂ Si, Ο α | | | | | t-BuMe ₂ Si O | 202.1 | | 0.4 | | СН3СОСН3 | 206.5 | 565.3 (571) ^{b,d} | | | Me ₃ SiCH=CH ₂ | | | -6.6 ^c | | Me ₃ SiC ₆ H ₅ | | | -4.5 ^c | | t-BuMe ₂ SiCH=CH ₂ | | | 0.9 | ^aRef. 6 ^bCH₃CN solvent ^cRef. 7 ^dRef. 9 against ambiguities in the interpretation. In Table 1 are collected ¹³C, ¹⁷O, and ²⁹Si chemical shifts measured⁸ in this laboratory in CDCl₃ solution for ketenes and other reference compounds, together with selected literature data. To ensure that the ¹⁷O shifts were not affected by hydrogen bonding⁹ with CDCl₃ several compounds were also measured in CH₃CN solutions, and as noted in the Table the solvent effects are small. The 13 C shifts of the carbonyl carbons (C_{α}) of Me₂C=C=O, PhCMe=C=O, and Ph₂C=C=O fall in the range δ 201.3 to 205.6. By contrast in the Me₃Si substituted ketenes and bisketenes C_{α} appears from δ 179.2 to 182.5, showing an upfield shift of 18.8 to 26.4 ppm due to Me₃Si substitution on ketenes. The 17 O shifts are even more dramatic, with the non-silylated ketenes absorbing from δ 329 to 340, while the silylated ketenes and bisketenes absorb from 255 to 270 ppm, 46 Chemistry Letters 1996 giving upfield shifts upon silyl substitution of 59 to 85 ppm. Thus both the 13 C and 17 O shifts of the carbonyl group in ketenes and bisketenes are shifted strongly upfield relative to the nonsilylated models, consistent with major electron donation from the Me₃Si-C bond in ketenes, as represented by 3A. By contrast substitution at C_{β} for either methyl or hydrogen by phenyl groups, which interact with the alkenyl moiety by normal p_{π}-p_{π} conjugation, shows no significant effects on the 13 C_{α} or 17 O shifts (*cf* the values for δ 13 C_{α} of 204.9, 205.6, and 201.3 for Me₂C=C=O, PhCMe=C=O, and Ph₂C=C=O, respectively, and those of 179.2 and 182.5 for Me₃SiCH=C=O and Me₃SiCPh=C=O, respectively). By contrast the 29 Si chemical shifts for Me₃Si groups bonded to sp² carbon in Me₃SiCH=CH₂, Me₃SiC₆H₅ and the cyclobutenedione 2 are δ -6.6, -4.5, and -8.4, respectively, while in the ketenes and bisketenes these are at -0.6 to 3.2, or shifted downfield by 3.9 to 11.6 ppm. These results are thus also consistent with electron withdrawal from the Me₃Si-C bond by the neutral hyperconjugation type of interaction shown in 3A. All the 13 C, 17 O, and 29 Si results for ketenes are opposite to those expected for the d_{π} -p_{π} interaction in 3B. Calculation of the chemical shifts by the IGLO method, 10 basis set II, using MP2/6-31G* optimized geometries gave the following results (experimental values in parentheses) for Me $_{\gamma}$ SiC $_{\beta}$ H=C $_{\alpha}$ =O: Si -6.0 (-0.2); O 275.0 (255.0); C $_{\alpha}$ 175.4 (179.2); C $_{\beta}$ -16.9 (-0.1); H $_{\beta}$ 1.45 (1.65); C $_{\gamma}$ -7.6, -4.2, -4.2 (0.9); H $_{\gamma}$ -0.30 (0.12), for Me $_{2}$ C=C=O: O 353.7 (329); C $_{\alpha}$ 215.0 (204.9); C $_{\beta}$ 26.9 (24.2); C $_{\gamma}$ 9.6 (10.1) 11 ; H $_{\gamma}$ 0.90, 1.03 (1.58), and for Me $_{3}$ SiCH=CH $_{2}$ Si -8.9 (-6.6). Thus the calculated values reproduce the large effects of Si substitution on 13 C $_{\alpha}$ ($\Delta\delta$ calc 39.6, obs 25.7 ppm), and 17 O ($\Delta\delta$ calc 78.7, obs 74 ppm), and the difference in 29 Si shift between Me $_{3}$ SiCH=C=O and Me $_{3}$ SiCH=CH $_{2}$ ($\Delta\delta$ calc 2.9, obs 6.4). The measurement of chemical shifts is also relevant to the elucidation of the interaction of β -silyl groups with electron deficient p orbitals in compounds such as ketones and esters, and in carbocations.⁵ There are downfield ²⁹Si shifts for Me₃SiCH₂COR (R = Me, OH, OEt) of 1.6 to 3.8 ppm relative to Me₄Si, consistent with hyperconjugative electron donation analogous to that shown in **3A**. However β -Me₃Si substituents apparently do not cause any noticeable effect on the carbonyl ¹³C shifts of ketones, as exemplified in the shift for acetone (Table). The effect on the ¹⁷O chemical shift of acetone by substitution of Me₃Si is also quite substantial, causing a shift of 28.6 ppm upfield for Me₃SiCH₂COCH₃ compared to CH₃COCH₃. By contrast the β-tert-butyl group causes a downfield shift of 6 ppm for t-BuCH₂COCH₃ compared to CH₃COCH₃. A comparison of the effect of Me₃Si substitution on ketenes and ketones is available from the ratio 2.6 of the ¹⁷O shift of 74 ppm upfield of Me₃SiCH=C=O compared to Me₂C=C=O and 28.6 ppm upfield of Me₃SiCH₂COCH₃ compared to CH₃COCH₃. For the ²⁹Si shifts the comparable ratio is 4.0 of the 6.4 ppm downfield shift of Me₃SiCH=C=O compared to Me₃SiCH=CH₂, and 1.6 ppm downfield of Me₃SiCH₂COCH₃ compared to Me₄Si. Thus the effect of β -Me₃Si substitution on the ¹⁷O and ²⁹Si chemical shifts in ketenes and ketones is roughly proportional, and is consistent with neutral hyperconjugation as shown in **3A**. In conclusion the 13 C, 17 O, and 29 Si NMR chemical shifts of silyl-substituted ketenes and bisketenes are all consistent with decreased negative charge on silicon, and increased negative charge on the carbonyl carbon and oxygen, when compared to model non-silylated ketenes, or to silylated alkenes. The charge distribution is highly supportive of an important role for the "neutral hyperconjugation" interaction shown in 3 A. Calculated chemical shifts reproduce the effects of silyl substitution found experimentally. There is further evidence for this interaction from the 17 O and 29 Si shifts of 6 trialkylsilyl ketones, esters, and acids. Grateful acknowledgement is made to Nick Plavac for the ¹⁷O and ²⁹Si NMR measurements, Professors Zvi Rappoport and Giovanni Ceroni for helpful discussions, and to the Natural Science and Engineering Research Council for financial support. ## References and Notes - T. T. Tidwell, Ketenes, Wiley, New York (1995), Chap. 4.5; D.-c. Zhao, A.D. Allen, and T. T. Tidwell, J. Am. Chem. Soc., 115, 10097 (1993); M. A. McAllister and T. T. Tidwell, J. Am. Chem. Soc., 116, 7233 (1994); A. D. Allen, J. Ma, M. A. McAllister, T. T. Tidwell, and D.-c. Zhao, Acc. Chem. Res., 28, 265 (1995). - 2 W. T. Brady and T. C. Cheng, J. Org. Chem., 42, 732 (1977). - 3 W. Runge, Prog. Phys. Org. Chem., 13, 315 (1981). - 4 A. D. Allen and T. T. Tidwell, *Tetrahedron Lett.*, 32, 847 (1991); L. Gong, M. A. McAllister, and T. T. Tidwell, *J. Am. Chem. Soc.*, 113, 6021 (1991). - 5 J. M. White, Aust. J. Chem., 48, 1227 (1995); J. B. Lambert, Tetrahedron, 46, 2677 (1990); J. R. Hwu, B.-L. Chen, L. W. Huang, and T.-H. Yang, J. Chem. Soc., Chem. Commun., 1995, 299; J. B. Lambert and R. A. Singer, J. Am. Chem. Soc., 114, 10246 (1992). - 6 J. Firl and W. Runge, Z. Naturforsch, 29B, 393 (1974); H. Duddeck and H.-W. Praas, Magn. Reson. Chem., 31, 182 (1993); Yu. K. Grishin, S. V. Ponomarev, and S. A. Lebedev, Zh. Org. Khim., 10, 404 (1974). G. Cerioni, A. Plumitallo, J. Frey, and Z. Rappoport, Magn. Reson. Chem., 33, 669 (1995). - H. Marsmann, In NMR Basic Principles and Progress, Vol. 17, P. Diehl, E. Fluck, and R. Kosfeld, Eds., Springer-Verlag, Berlin (1981); E. A. Williams, In The Chemistry of Organic Silicon Compounds, Chap. 8, S. Patai and Z. Rappoport, Eds., Wiley, New York (1989); H. Sakurai, Y. Kamiyama, A. Mikoda, T. Kobayashi, K. Sasaki, and Y. Nakadaira, J. Organomet. Chem., 201, C14-C18 (1980). The ¹⁷O and ²⁹Si NMR spectra were measured in 5 mm tubes at a temperature - 8 The 17 O and 29 Si NMR spectra were measured in 5 mm tubes at a temperature of 20.5±0.5 °C with a Varian VXR 400S instrument operating at 54.219 MHz for 17 O and 79.459 MHz for 29 Si. Concentrations were ca 30% v/v for 17 O, which are referred to external D₂O (δ = 0) and 5% v/v for 29 Si. The 29 Si spectra were measured via the DEPT sequence using a value of 2 JSi-H = 6.7 Hz and using TMS (δ = 0) as reference. - 9 170 NMR Spectroscopy in Organic Chemistry, ed by D. W. Boykin, CRC Press, Boca Raton (1991); C. Delseth and J. P. Kintzinger, Helv. Chem. Acta, 59, 466, 1411 (1976). - 10 W. Kutzelnigg, U. Fleischer, and M. Schindler, In NMR Basic Principles and Progress, Vol. 23, Springer-Verlag, Berlin (1991). For Me₃SiCH=C=O the basis set for the Me groups was DZ + POL. - 11 Calculated using basis set DZ for Me, experimental Me of Et(Me)C=C=O, Ref. 6.